
Complexity Theory

Homework Sheet 3
Hand in before the lecture of Tuesday 28 Feb.

Preferably by email to bannink@cwi.nl

21 February 2017

Exercise 1. Is there an oracle such that, relative to this oracle, ...? If so, then exhibit
such an oracle and prove it works. If not, prove why not.

(a) P = EXP

(b) coNP ⊆ P and NP 6⊆ P

(c) NP = coNP 6= EXP

For example, in (a) you have to either show: there exists an oracle A such that PA =
EXPA, or: such an oracle does not exist. In (b) you show either: there exists an oracle
A such that coNPA ⊆ PA and NPA 6⊆ PA, or: such an oracle does not exist.

Solution.

(a) By the Time Hierarchy Theorem we know that P (EXP and this is a proof that
relativizes, so this holds relative to any oracle. Hence there is no oracle such that
relative to this oracle P = EXP.

Common mistake regarding P (EXP
The time hierarchy theorem is stated in terms of the classes DTIME(f(n)) and

DTIME(g(n)). From this theorem it directly follows that DTIME(nc) (DTIME(2n
c′

)
(for all c, c′). One might think that this means P (EXP. This by itself, how-
ever, is not sufficient to show that P (EXP where P = ∪c≥1DTIME(nc) and
EXP = ∪c≥1DTIME(2nc

).
To see why this is not enough, consider the closed interval Aj = [1/j, 1] and the union
A = ∪j≥1Aj. Then for each j we have Aj ((0, 1], (for every j there is an x ∈ (0, 1]
with x /∈ Aj). However, once we take the union we see that A = (0, 1].
Similarly, with the argument above we have shown that seperately for each part
of the union there is a language in EXP that is not in that part of DTIME(nc).
But instead we have to show that there is such a language that does the job for all
c at the same time. To do this, we can instead separate two classes within EXP:
note that DTIME(2n) (DTIME(2n2

) (by the time hierarchy theorem). Since
DTIME(nc) ⊂ DTIME(2n) for all c, we have that P ⊂ DTIME(2n) and hence
P (DTIME(2n2

) so P (EXP.

1

(b) Let A be any language such that assume coNPA ⊆ PA. Now let L ∈ NPA, then
L̄ ∈ coNPA and by assumption L̄ ∈ PA. We then have L ∈ PA because one can flip
the output of the polynomial time machine that decides L̄. This shows NPA ⊆ PA.
We conclude that there is no oracle such that the required inclusions hold.

(c) Use the language expcom (called KEXP in the lecture). It was shown in the lecture
(also in the book) that with this oracle one has NPexpcom = coNPexpcom = Pexpcom =
EXP. Furthermore from the argument in (a) it follows that Pexpcom 6= EXPexpcom

and hence the required (in)equalities are satisfied relative to the oracle expcom.

Possible mistake when showing EXP 6= EXPexpcom.
Intuitively, the reason that EXPexpcom is strictly larger is that on an input of size
n, an exponential-time Turing Machine can write queries to expcom that are of
size 2nc

. The expcom oracle then does a computation that is exponential in 2nc
,

so it is effectively doing a double exponential computation in terms of the original
input size n. This intuition is valid, and by the time hierarchy theorem we have that

DTIME(2nc′
) (DTIME(22n

c

). However, since EXP is defined with an infinite
union, one has to be careful about directly concluding EXP 6= EXPexpcom, for the
same reason as explained at ‘common mistakes’ in (a).

Exercise 2. Let C be the class of sets decidable by Turing machines which use polynomial
space, but are not allowed to reuse space. I.e., the Turing machine can write over blank
tape cells, but it can neither erase nor overwrite previously used cells – it is allowed to go
back over the tape and read them.

(a) Prove that C ⊆ P.

(b) Prove that P ⊆ C.

Definition 1. We say that a set A is 1-query length-decreasing self-reducible if there is a
polytime oracle Turing machine M , such that

x ∈ A ⇐⇒ MA(x) = 1.

Moreover, the computation of MA(x) makes at most one query to the oracle, and that
query has to be a string of length strictly less than |x|.

Exercise 3. Show that every 1-query length-decreasing self-reducible set is in P.

Exercise 4. Prove that in the certificate definition of NL (Book §4.3.1), if we allow the
verifier machine to move its head back and forth on the certificate, the class being defined
changes to NP. Hint: Consider 3-sat.

Solution. Let NL′ be the alternate definition where the verifier can read the certificate
tape cells more than once. The goal is to show that NL′ = NP. By counting the number
of configurations of the configuration graph one can see that any NL′ verifier machine
takes at most polynomial time and hence NL′ ⊆ NP. It remains to show that NP ⊆ NL′.
To show this, we will first show that sat ∈ NL′ and then show that any language in NP
reduces to sat using only logarithmic space.

2

We first show that 3-sat ∈ NL′. The certificate represents a truth assignment to the
boolean variables, and has length exactly n when there are n variables. A verifier machine
M gets an input ϕ (a formula in 3-CNF form)1 and a certificate u. Now M goes over all
clauses of the formula, and for each clause does the following. Set a bit z to zero. Now
look up the (three) relevant bits in u. This requires a pointer (counter) of size log n, since
the formula makes a reference to a variable, say xi, and M then has to look up the i-th
bit of u. After looking up the bit, check if this makes the clause true and set z to 1 if so.
If not, continue with the next variable in that clause. If after these three lookups z is still
zero then output false and halt. If z was one then, clear all space and continue with the
next clause. After the final clause has been validated, output true and halt. This machine
requires only a pointer of size log n (and some constant size memory) and correctly verifies
any formula. We conclude that 3-sat ∈ NL′.
(Note that this algorithm also works for sat because even if the size of a single clause
becomes large, M only verifies the clause one literal at a time, and the variable z keeps
track of the ‘or’ of the literals so far. The pointer that is used to loop up the bit in u can
be re-used for every literal in the clause. Hence we also have sat ∈ NL′.)

By the Cook-Levin theorem we know that any language L in NP reduces to sat (or
3-sat) in polynomial time. (i.e. a polytime Karp reduction). This is not enough for
this exercise. However the result of the theorem is stronger because these reductions
can also be done using only logarithmic space. To see this, look at the proof of the
Cook-Levin theorem and note that this proof deals with ‘snapshots’ of constant size
and with ‘head positions’ and ‘times’ which are logarithmic in size. To construct a sat
instance, the reduction machine creates constant size clauses that verify these snapshots
and positions. Once such a clause has been written to the output tape, the machine can
reuse all work-space to create the next clause. The output tape does not count as space
usage, and hence these reductions can completely be done in logarithmic space.

Now we have that any language L ∈ NP is in NL′ because L ≤log sat and sat ∈ NL′,
so we conclude NL′ = NP.

Something to think about: Why does the following not show that sat is in NL:
Consider the same machine as before, but as a certificate simply use many copies of the
truth-assignment, so simply repeat the bitstring u many times and use that as a new
certificate. Then everytime the verification machine wants to loop up a bit in u, it can go
to the next copy and never has to move back. Now it is a read-once certificate. Why does
this not mean that sat is in NL?

1The machine has to check if the input is of this form; this can be done in logspace

3

