
Complexity Theory

Homework Sheet 1 - Solutions

February 16, 2017

Exercise 1. For the following pairs of functions and relations (i.e. O, o, ω,Ω,Θ), prove for
the two relations at each pair whether they hold or do not hold.

1. f(n) = nlogn g(n) = 2(logn)3 g ∈ Ω(f) ? f ∈ Θ(g) ?

2. f(n) = log n g(n) = n g ∈ ω(f) ? f ∈ O(g) ?

3. f(n) = n5 g(n) = 100n5 f ∈ o(g) ? g ∈ Θ(f) ?

Exercise 2. By the fundamental theorem of arithmetic, any natural number x can be
uniquely written as a product

x = p1 · p2 · · · pk
with p1, . . . , pk prime numbers such that pi ≤ pj if i < j. This yields a function

f : N→ {0, 1}∗ : x 7→ 〈p1, p2, . . . , pk〉,

which maps a natural number x to a binary encoding of the prime factorization of x. See
section 0.1 of the book for more explanation of the notation used here.

(a) Using the fact that there is a polynomial-time algorithm for testing primality,1 show that
deciding whether z = f(x), when given x and z as input, can be done in polynomial
time.

(b) Show that the set

Factorization = {〈x, i〉 | the i-th bit of f(x) is 1}

is in NP. Here 〈x, i〉 is a binary encoding of the integers x, i.

(c) Show: if Factorization is NP-complete, then NP = coNP.
Hint: First show that Factorization is in coNP.

(d) Define
Composite = {〈x〉 | x ∈ N has at least two prime factors}.

Show: Composite is NP-complete if and only if P = NP.

1Which has been an open problem for a very long time, but solved in 2002 by Agrawal, Kayal and Saxena,
see http://en.wikipedia.org/wiki/AKS_primality_test.

1

Solution. (a) Define a Turing machine M to do the following on input x, z in this order:

• Reject if z is not a binary encoding of a tuple z = 〈a1, ..., ak〉
• Reject if ai > ai−1 for some i = 2, ..., k.

• Test the primality of all ai and reject if any of the ai is not prime.

• Compute y = a1 · ... · ak and accept if and only if x = y

All four steps take polynomial time (polynomial in size of the input x, z), and M accepts
if and only if z is equal to f(x) (i.e. the unique factorization of x).

(b) We have to show that there is a polynomial time Turing machine M that, for every
x ∈ {0, 1}∗ satisfies

x ∈ Factorization ⇐⇒ ∃u ∈ {0, 1}p(|x|) M(x, u) = 1

where p is some fixed polynomial. Define M to do the following, in this order:

• Reject if x is not of the form x = 〈x′, i〉
• Reject if u is not of the form u = 〈a1, ..., am〉
• Check if u = f(x′) using (a) in polynomial time.

- If u 6= f(x′) then reject.
- If u = f(x′) then accept iff the ith bit of u is 1.2

By definition, the only way to make M accept is by using a witness u that is equal to f(x′)
and that has the ith bit equal to 1. Such a u exists if and only if x ∈ Factorization:
if x is not in Factorization, then there is no u that can make M accept. Furthermore,
the length of u is a polynomial of |x| since every prime factor’s representation is at most
|x| bits and there are at most |x| prime factors, so p(|x|) ∈ O(|x|2).

(c) Use Definition 2.20 in the book for coNP. To show that Factorization is in coNP,
we need to define a polynomial time Turing machine M that, for every x ∈ {0, 1}∗
satisfies

x ∈ Factorization ⇐⇒ ∀u ∈ {0, 1}p(|x|) M(x, u) = 1

where p is some fixed polynomial. Notice the change of ∃ to ∀ compared to the NP
case. Define M to do the following, in this order:

• Reject if x is not of the form x = 〈x′, i〉
• Accept if u is not of the form u = 〈a1, ..., am〉
• Check if u = f(x′) using (a) in polynomial time.

- If u 6= f(x′) then accept.
- If u = f(x′) then accept iff the ith bit of u is 1.3

The bold words mark the changes compared to the machine in exercise (b). Let us check
why this machine satisfies the requirement. If x ∈ Factorization then x = 〈x′, i〉 and
the ith bit of f(x′) is 1. For any u ∈ {0, 1}p(|x|), whether it is f(x′) or not, we see that

2So reject if i is larger than the size of u.
3Reject if i is larger than the size of u.

2

M(x, u) will accept. If x /∈ Factorization then either x is not of the form 〈x′, i〉 or
the ith bit of f(x′) is 0. If x is not of the form 〈x, i〉 then M rejects and if it is of that
form then there is a u that makes M reject, because M will reject if u = f(x′). The
requirement is satisfied so Factorization ∈ coNP.

If Factorization is NP-complete then for any L ∈ NP, we have L ≤p Factorization,
so L ∈ coNP because Factorization ∈ coNP. (A coNP verifier for L can first do the
reduction in polynomial time and then run the verifier for Factorization). We there-

fore have NP ⊆ coNP(1). By definition of coNP we have L ∈ coNP
(2)⇐⇒ L̄ ∈ NP.

Therefore:

L ∈ coNP
(2)

=⇒ L̄ ∈ NP
(1)

=⇒ L̄ ∈ coNP
(2)

=⇒ L ∈ NP,

so coNP ⊆ NP and we conclude NP = coNP.

(d) A number is composite iff it is not prime4. Since primality testing is in P, we have
Composite ∈ P as we can flip the output of the turing machine for primality testing.
If Composite is NP-complete then for all L ∈ NP we have L ≤p Composite so then
L ∈ P. This holds for any L so we have NP ⊆ P and hence P = NP. For the other
implication, assume P = NP. In this case, Composite is NP-complete because any
problem in NP can be computed in polynomial time and then mapped to a yes-instance
or no-instance of Composite, in polynomial time. (For example, the polynomial time
reduction can simply compute the result and output ‘4’ (composite) if the result is true
and output ‘3’ (not composite) if the result is false.)

Exercise 3. A given function f : {0, 1}∗ → {0, 1}∗ is called honest if there is some real
constant c ≥ 0 such that |f(x)|c > |x| for all x, where |x| is the length of the bitstring x. We
say the inverse of a function f is polynomial-time computable if there is a Turing machine
that always halts in polynomial time and that given an input y ∈ {0, 1}∗ computes and
outputs an x ∈ {0, 1}∗ such that f(x) = y or outputs none if no such x exists.

(a) Show that if P = NP then for every honest function that is polynomial-time com-
putable, the inverse is also polynomial-time computable.

(b) Prove the converse of the previous statement, i.e., show that if every honest, polynomial-
time computable function has a polynomial-time computable inverse, then P = NP.
Hint: Which function would you have to invert to find the witness you are searching
for?

Together, the result is sometimes known as the cryptographic theorem:

Theorem 1. P = NP if and only if every honest, polynomial-time computable function has
a polynomial-time computable inverse.

4Where the number 1 is an exception if you do not consider it prime, but a Turing machine can simply
check for this and handle it separately.

3

Solution. (a) Let f be an honest function (|f(x)|c > |x|) that is polynomial-time com-
putable. Define the language L as the image of f , so L = {y | ∃x : f(x) = y}. Define
a Turing machine M that gets inputs x, y and outputs 1 if and only if f(x) = y by
computing f(x) in polynomial time and comparing it to y. We have L ∈ NP because
M is a polynomial time verifier for L:

y ∈ L ⇐⇒ ∃x ∈ {0, 1}p(|y|) M(x, y) = 1,

where the polynomial p is given by p(|y|) = |y|c. If P = NP then L ∈ P so there
is a polynomial-time machine that decides L. This polynomial-time machine solves
the decision problem but this can be converted to a machine that finds the certificate
by theorem 2.18 (page 55). This machine is a polynomial time Turing machine that
computes the inverse of f so we conclude that the inverse of f is polynomial-time
computable.

Alternative solution: Alternatively, without using theorem 2.18 directly, one can con-
struct a slightly different language L′ that allows us to compute the certificate by ba-
sically doing to construction of theorem 2.18 manually. Consider L′ = {〈y, x′〉 | ∃x :
f(x′x) = y} where x′x is the concatenation of x′ and x. A polynomial-time verifier for
L′ can simply concatenate x′ with the certificate u and check if f(x′u) = y. Note that
there is an x that starts with x′ (i.e. x agrees on the first |x′| many bits with x′) such
that f(x) = y if and only if there is a certifcate u for 〈y, x′〉. By a similar argument
as above we have L′ ∈ NP. If P = NP then L′ ∈ P so there is a polynomial-time
machine ML′ that decides L′. Now we can use ML′ that solves the decision problem
L′ to construct a polynomial-time machine M that finds the certificate. The machine
M(y) simply calls ML′(〈y, 0〉) and ML′(〈y, 1〉). If both reject then M(y) outputs none.
If one of them accepts (or even both) then M knows the first bit of x and can call ML′

again to find out the second bit and so on untill it learned the full certificate which is
the inverse of f . This is called prefix search.

(b) Let L ∈ NP, then there exists a polynomial-time Turing machine M and a polynomial
p such that x ∈ L if and only if ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1. Define the
function f : {0, 1}∗ → {0, 1}∗ as

f(〈x, u〉) =

{
〈1, x〉 M(x, u) = 1

〈0, x〉 M(x, u) = 0
.

Note that |〈x, u〉| = O(|x|+p(|x|)) and |f(〈x, u〉)| = |〈b, x〉| = |x|+1 (where b ∈ {0, 1}).
Because p is a polynomial there exists a c such that |x|+ p(|x|) < (|x|+ 1)c, where c is
independent of x. This shows that the function f is honest and since M is polynomial-
time computable, so is f .

Now assume that f has a polynomial-time computable inverse. Consider the TM N
that, on input x, computes the inverse of f on 〈1, x〉. If the result of that computation
is none then N outputs 0 and otherwise N outputs 1. Note that N decides L because
x ∈ L if and only if there there exists a u such that f(〈x, u〉) = 〈1, x〉. So the inverse
of 〈1, x〉 exists if and only if x ∈ L. Since the computation of the inverse is polynomial-
time by assumption, N is a polynomial-time Turing machine that decides L. Therefore
L ∈ P and we conclude P = NP.

Exercise 4. Show that NP ⊆ EXP.

4

