
Computational	Complexity

Harry	Buhrman
(buhrman@cwi.nl)

Tom	Bannink
(bannink@cwi.nl)

Algorithms	&	Complexity	group
QuSoft

Course	requirements
• Computational	Complexity:	A	Modern	Approach	by	Arora

&	Barak (http://www.cs.princeton.edu/theory/complexity/)

• lectures	(hoorcollege)	
– Tuesday	13:00-15:00,	Thursday	13:00-15:00

• werkcollege:	
– Friday	9:00–11:00
– http://turing-machine.nl/

• Compulsory:	hand	in	exercises	every	week	on	Tuesday
• Final	exam

Grade

• Hand	in	exercises	before	lecture	on	
Tuesday	the	week	after	they	were	
distributed	

• Final	grade	exercises	is	average	of	obtained	
grades.	We	will	drop	the	lowest	grade

• Cooperation	is	allowed,	always	write	down	
solutions	on	your	own

• Final	grade	=	average	of	grade	final	exam	
and	exercises

Step 1: Post Elusive Proof. Step 2: Watch Fireworks.
By John Markoff
Published: August 16, 2010

The potential of Internet-based collaboration was vividly
demonstrated this month when complexity theorists used blogs
and wikis to pounce on a claimed proof for one of the most
profound and difficult problems facing mathematicians and
computer scientists.

The Blog of Scott Aaronson

Quantum computers are not known to be able
to solve NP-complete problems in polynomial time.

Putting my money where my mouth isn’t

A few days ago, Vinay Deolalikar of HP Labs started
circulating a claimed proof of P≠NP. As anyone could
predict, the alleged proof has already been Slashdotted
(see also Lipton’s blog and Bacon’s blog), and my own
inbox has been filling up faster than the Gulf of
Mexico.

Monday, August 9th, 2010

P	versus	NP
problem

P	versus	NP	

• One	of	the	seven	millennium	prize	problems
• “In	the	case	of	the	P	versus	NP	problem	and	the	Navier-

Stokes	problem,	the	SAB	will	consider	the	award	of	the	
Millennium	Prize	for	deciding	the	question	in	either	
direction.”

• P	not	equal	NP) 1	million	$
• P			equal					NP) 1	million	$6	million	$

Main	characters:	Algorithms

Algorithm

• Algorithm	is	like	a	cooking	recipe	

Algorithm

• Algorithm	is	like	a	cooking	recipe	

Algorithm

• algorithm	is	like	a	cooking	recipe

• input
• computation

– steps	(1	time	unit)
• output

Example
Greatest	Common	Divisor	(GCD)

Slow	Algorithm

slow-gcd(a, b)
i = min(a,b)

while i - a or i - b
i := i -1

output i

a=21		b=13

13 - 21i=13
i=12 12 - 21
i=11 11 - 21
i=10 10 - 21

!

i=7 7 - 13
!

i=1

output	1

step	1
step	2
step	3
step	4

step	7

step	13

Analysis	of	Algorithm
Analysis	of	alg.	is	preparation	time	of	recipe

Slow	Algorithm

slow-gcd(a, b)
i = min(a,b)

while i - a or i - b
i := i -1

output i

a=21		b=13

13 - 21i=13
i=12 12 - 21
i=11 11 - 21
i=10 10 - 21

!

i=7 7 - 13
!

i=1

output	1

if	gcd(a,b)=1	then	
algorithm	uses	min(a,b)	steps

step	1
step	2
step	3
step	4

step	7

step	13

Better	Algorithm

Euclidean	Algorithm

Greatest	Common	Divisor	(GCD)

function gcd(a, b)
while b ≠ 0

t := b
b := a mod b
a := t

output a

a=21				b=13

a=13				b=	21	mod	13	=	8
a=8					b=	13	mod	8 =	5

a=5					b=	8	mod	5 =	3

a=3					b=	5	mod	3 =	2

a=2					b=	3	mod	2 =	1

a=1					b=	2	mod	1 =	0

step	0

step	1

step	2
step	3

step	4

step	5

step	6
output	1

Analysis	GCD-Algorithm

• worst	case	number	of	steps? function gcd(a, b)
while b ≠ 0

t := b
b := a mod b
a := t

output a

a=21			b=13
a=13			b=	21	mod	13	=	8
a=8					b=	13	mod	8 =	5
a=5					b=	8	mod	5 =	3
a=3					b=	5	mod	3 =	2
a=2					b=	3	mod	2 =	1
a=1					b=	2	mod	1 =	0

step	0
step	1
step	2
step	3
step	4
step	5
step	6

Theorem
alg.	terminates	in
2log	(m)	+1	steps
m=max(a,b)

Proof:
every	second	step	a is
at	least	halved

Complexity

• Euclid:		2log	(m)	+1				m	=max(a,b)
• Slow:												 m’									 m’=	min(a,b)
• Length	of	the	input:	log(a)	+	log(b)	=	n

• Euclid	exponentially faster	than	slow!
• Complexity of	computational	problem	is	
running	time	of	the	best algorithm

Euclid: Slow:

Computation	&	Complexity

• Computational	problem:
– INPUT							computation OUTPUT

– Example:	a,b output	gcd(a,b)

• Complexity:
– Number	of	computation	steps	needed	for		
“best”	algorithm

– function	of	the	input	size

Complexity

• Determine	the	complexity of	a	
computational	problem:
– Upper	bound:	construct	algorithm
– Lower	bound:	any algorithm	needs	this	many	
steps

• Ideally	upper	bound	=	lower	bound

functions of the input size

Complexity	of	gcd problem

• Euclid’s	algorithm	runs	in	O(n)	steps
• Can	we	devise	a	faster	algorithm?
• Not	really:	any algorithm	has	to	read	the	
whole	input:	requires	n	steps
– Upper	Bound:	O(n)
– Lower	Bound:	W(n)

• Complexity	of	gcd is	linear.

Complexity	Class	P

Feasible	Problems:	P

• Feasible	or	efficient	algorithms	run	in	
polynomial	time:		nc (some	c)

• Complexity	Class	P	:
– All	the	problems	that	have	feasible	algorithms

• Example:
– Linear Programming
– Network	Flow	Problems
– Shortest	Path

For these problems
upper bound is
“close” to lower
bound: at most
polynomial far off.

Another	problem
Satisfiablity

Satisfiability
• variables
• Clause	
• formula
• exist
• such	that		

Example

Example

Satisfiability
• variables
• Clause	
• formula
• exist
• such	that		

simple	algorithm:	try	all	2n assignments

Unknown	Complexity

• It	is	hard	to	determine	the	complexity	of	
many problems

• Example:
– Is	this	formula	satisfiable?						SAT
– Traveling	Salesman	Problem.		 TSP

• Lower	Bound:	n
• Upper	Bound:	2n

Best Known!

Complexity	Class	NP

NP
• P	=	class	of	problems	that	are	efficiently
computable.

• NP	=	class	of	problems	that	have	efficiently	
checkable	solutions.
– but	solution	may	be	hard	to	find!

Tangram NP:	easy	to	check	solution

solution

P:	compute	solution

NP

• complexity	class	NP
– polynomial	time		to	check	solution

• x in	L:	exists	a	y:	P(x,y) =	1	(true)			

j is satisfiable
$ a : j(a) = True

polynomial time computable in length of x only

SAT	in	NP

P	&	NP
• complexity	class	NP

– easy	to	check	solution
– polynomial	time	check
– easy	to	check	assignment	is	satisfiable

• complexity	class	P
– easy	to	find	solution
– decide	in	polynomial	time
– compute	in	polynomial	time	gcd(a,b)

P	µ NP

P

NP

SAT

gcd

strictly, gcd is a
function and not a
set. Will ignore this
distinction here

TSP

Primality

Many many more
problems fall into this
classification

Reductions	&	Completeness

A		 B
compute	A in	poly-time	with	B as	free	subroutine

“A is	computationally	not	harder	than	B”

“if B	in	P then	A	in	P”

C is	NP-complete
• C	2 NP
• all A	2 NP:	A						C

reduction

Theorem
•SAT,	TSP,	many	others	NP-complete
•SAT	in	P	, P=NP

P	versus	NP

NPSAT

P	¹ NP

P

P

NPSAT

P	= NP

= NP

P	versus	NP	Question

• P	=	NP?
• widely	believed	that		P	¹ NP
• how	to	show	this	is	true?

– Prove	better	lower	bounds	for	existing	
problems	like	SAT

– Construct	problem	in	NP	with	super	
polynomial	lower	bound

Lower	Bounds

• Construct	D	2 NP
• no	poly-time	algorithm	solves	D

– for	every	poly	time	algorithm	M	exists	a	string	
x	such	that:
• M(x)	=	1		&		x D or
• M(x)	=	0	&		x	 D

D							SAT) SAT	not	in	P

) D	not	in	P

Diagonalization

How	big	are	the	reals ?

• Cantor	showed						not	enumerable

• diagonalization
– given	an	enumeration	of	the	reals
– construct	real	number	d not	in	the	
enumeration

Diagonalization	

r1

r2

r3

r4

r5

r6

r7

r8
¯

1 2 3 4 5 6 7 8 ®

0.8
0.3
0.5
0.7
0.8
0.8
0.9
0.9

0
1
9
9
6
9
5
3

1
2
3
6
3
7
8
9

7
4
7
6
8
3
2
1

7
8
7
5
9
4
5
2

4
6
9
7
5
6
3
3

1
7
4
9
1
0
1
0

5
3
1
4
4
2
3
4

realsin	som
e	enum

eration

d=	0.9		3						0				7						0				7					2					5	"
ith digit	of	d is	ith entry	of	diagonal	+1	

Diagonalizing	out	of	P

Diagonalization	(2)

M1

M2

M3

M4

M5

M6

M7

M8
¯

x1							x2								x3							x4								x5						x6								x7							x8	 ®

0
1
0
0
1
1
0
0

0
1
1
1
0
0
0
1

1
1
1
0
0
1
1
1

0
0
0
0
1
1
1
1

0
0
0
1
1
1
0
0

0
0
0
0
0
0
0
0

1
0
1
0
1
0
1
0

1
1
1
0
0
1
1
1

xi in	D if	and	only	if	Mi(xi)=0

polynom
ial	tim

e	algorithm
s

D
x1 x2

D
x3
D

x4 x5 x6 x7 x8
D DD D D

Diagonal	Language

D P,	every	poly-time	machine	errs	on	some	input	

ith poly-time	algorithm/machine

D NP	?? probably	not,	but

D time(nlog	n),	quasi	polynomial	time	

with	more	time	can	compute	more

More	Bad	News

• Relativization	(Oracles):
– Exists	oracle	A:				PA =	NPA

– (Exists	oracle	B:				PB ¹ NPB)

Proof	technique	should	not	relativize

Diagonalization and
most other techniques

we know
relativize

Try	something	easier

• Study	weaker	models	of	computation	and	
develop	new	lower	bound	techniques
– Circuits	with	small	depth
– Monotone	circuits
– Decision	Trees
– Branching	Programs	

• The	weaker	the	model	the	better	the	lower	
bounds!

Simple	model:
Circuits

Circuit	Model	of	Computation

x1

and

not

F(x)

OR

xn
0/1

x2
0/1 0/1

0/1
ev
al
ua
te

Ci
rc
ui
t x	in	SAT	?

Size	of	the	Circuit

1. most	important:
number	of	gates

2.	Depth	of	the	circuit

x1

and

not

F(x)

OR

xnx2
Parallel	time	of	computation

Constant	Depth	

x1

and

not

F(x)

OR

xnx2

depth is	constant
size is	polynomial

AC0

compute	parity:
F(x)	=	x1 +	x2 +	" +	xn mod	2

Theorem	
parity	requires											size	circuits
of	depth	d

Note:	d	=	log	n	bound	is	meaningless	

P

NP
SAT

Parity

AC0

AC1

AC1 poly	size
log	n	depth

P	is	poly	size
poly	depth

NP	=	AC1 ?

AC0 poly	size
constant	depth

natural	proofs	another	hurdle?

• proof	technique	that	shows	parity	not	in	
AC0 likely	won’t	work	to	separate	P	from	
NP	

• these	proofs	fit	in	a	framework	called	
natural	proofs

Theorem
if	one-way	functions	exist	then
natural	proofs	can’t	separate	P	and	NP

Approaches

• Structural	approach	using	eg.	autoreducibility
• Combinatorial	approach
• Algebraic,	degrees	of	multivariate	polynomials
• Geometric	Complexity

– algebraic	geometry
– representation	theory	

• Communication	complexity

P	vs NP	&	Cryptography

• computational	hardness guarantees	security of	
cryptographic protocols
– factoring,	discrete	logarithm
– lattice	problems
– learning	problems

• one-way	functions
– compute	f(x)	quickly
– hard to	invert

• if	P=NP	then	no	cryptography

efficient	on
quantum	computer

Beyond	NP

coNP

𝑆𝐴𝑇
𝑆𝐴𝑇 𝐿 ∈ 𝑐𝑜𝑁𝑃	 ↔	𝐿 ∈ 𝑁𝑃

𝜙 ∈ 𝑆𝐴𝑇: 	𝜙 𝑥 has	no	
satisfying	assignment

Tangram:
puzzle	has	no	solution

𝑥 ∈ 𝐿: ∀𝑦	𝑃 𝑥, 𝑦 = 0

P

co-NPNP

Polynomial	Time	Hierarchy
𝐿 ∈ 𝑁𝑃:	

𝑥 ∈ 𝐿: ∃𝑦	𝑃 𝑥, 𝑦 = 1

Σ7
8

𝐿 ∈ 𝑐𝑜𝑁𝑃:	
𝑥 ∈ 𝐿: ∀	𝑃 𝑥, 𝑦 = 0

Π7
8

𝐿 ∈ Σ:
8:	

𝑥 ∈ 𝐿: ∃𝑦∀𝑧	𝑃 𝑥, 𝑦, 𝑧 = 1

first	level

𝐿 ∈ Π:
8:	

𝑥 ∈ 𝐿: ∀𝑦∃𝑧	𝑃 𝑥, 𝑦, 𝑧 = 0

second	level

Circuit	Minimization	(CM):
given	circuit	𝐴	∃ circuit	𝐵 < 𝐴		∀𝑥: 𝐴 𝑥 = 𝐵(𝑥)

CM	is	Σ:
8-complete	

Polynomial	Time	Hierarchy
𝐿 ∈ 𝑁𝑃:	

𝑥 ∈ 𝐿: ∃𝑦	𝑃 𝑥, 𝑦 = 1

Σ7
8

𝐿 ∈ 𝑐𝑜𝑁𝑃:	
𝑥 ∈ 𝐿: ∀	𝑃 𝑥, 𝑦 = 0

Π7
8

𝐿 ∈ Σ:
8:	

𝑥 ∈ 𝐿: ∃𝑦∀𝑧	𝑃 𝑥, 𝑦, 𝑧 = 1

first	level

𝐿 ∈ Π:
8:	

𝑥 ∈ 𝐿: ∀𝑦∃𝑧	𝑃 𝑥, 𝑦, 𝑧 = 0

second	level

𝐿 ∈ Σ@
8:	

𝑥 ∈ 𝐿: ∃𝑦7∀𝑦:∃𝑦@	𝑃 𝑥, 𝑦7, 𝑦:, 𝑦@ = 1
PH=	⋃ ΣB

8 �
B

PHPH	= 	⋃ 	ΣB
8 �

B

...

Σ@
8

Σ:
8

P

co-NPNP

Believe:	PH	is	infinite

ΣD
8 = ΠD

8

⟺
PH	=	ΣD

8

Π:
8

Π:
8

Σ7
8 Π7

8

Space	Complexity

to	boldly	go	where	no	man	has	gone	before

Space	Complexity

• Time	of	a	computation	not	only	resource	
that	matters

• Space	or	memory	the	computer	uses
• L:	logarithmic space	usage

– models	web	applications
• PSPACE:	polynomial space	usage

– natural	class	with	natural	complete	problems

PSPACE

...
P

co-NPNP

PH

logarithmic
space

path	from	
s to	t	in

undirected	graph	L

polynomial
space

optimal
gameplay

PSPACE
≠

LOGSPACE

but
unknown	

P=PSPACE
?

Quantum	Polynomial	Time

• New	Complexity	Class
• Problems	that	can	be	efficiently	computed	
on	a	quantum	computer

• Where	does	BQP	sit	in	the	complexity	
landscape?

BQP

P

co-NPNP

BQP

BQP

L

PH...

PSPACE

????

what	if	P	=NP

P=NP

• P=NP,	but the	proof	does	not	give	us	an	
algorithm

• P=NP,	but algorithm	for	SAT	runs	in	time	
n1000000

• P=NP,	but	algorithm	for	SAT	runs	in	time	
2100n

• P=NP,	and algorithm	for	SAT	runs	in	time	n2

n2 algorithm	for	SAT

• Wonderful!!!
– computing	ground	states	of	Hamiltonians
– protein	folding	problem	solved
– artificial	Intelligence	takes	really	off
– optimal	scheduling
– computational	learning	theory	
– weather	prediction	improves

n2 algorithm	for	SAT

• For	mathematics
– can	find	proofs	to		theorems,	provided	they	
have	short	proofs

– can	simply	ask	computer	whether	
theorem/conjecture	is	true/false

– mathematics	will	change	dramatically	
– quickly	solve	the	other	5	remaining	Clay	
problems

Summary

• P	versus	NP	central,	not	just	in	mathematics	and	
computer	science	but	also	in	physics,	biology,	
chemistry,	cryptography	etc.

• Not	clear	how	to	attack	it,	several	obstacles:	
relativization,	natural	proofs,	algebraization

• Much	simpler	questions	are	still	way	out	of	reach
• If	P=NP,	the	world	would	drastically	change,	with	
lots	of	fantastic	application,	but	no	privacy	
(cryptography).

Schedule
2) P,	NP,	reductions,	co-NP
3) Cook-Levin	Thm:3-SAT	is	NP-complete,	Decision	vs Search
4) Diagonalization,	time	hierarchies
5) Relativization
6) Space	complexity,	PSPACE,	L,	NL
7) The	polynomial	hierarchy
8) Circuit	complexity,	the	Karp-Lipton	Theorem
9) Parity	not	on	AC^0
10) Probabilistic	algorithms
11) BPP,	circuits	and	polynomial	hierarchy
12) Interactive	proofs,	Graph-Isomorphism	problem
13) IP	=	PSPACE

https://exploration.open.wolframcloud.com/objects/exploration/Turing.nb

